Federated Deep Learning frameworks can be used strategically to monitor Land Use locally and infer environmental impacts globally. Distributed data from across the world would be needed to build a global model for Land Use classification. The need for a Federated approach in this application domain would be to avoid transfer of data from distributed locations and save network bandwidth to reduce communication cost. We use a Federated UNet model for Semantic Segmentation of satellite and street view images. The novelty of the proposed architecture is the integration of Knowledge Distillation to reduce communication cost and response time. The accuracy obtained was above 95% and we also brought in a significant model compression to over 17 times and 62 times for street View and satellite images respectively. Our proposed framework has the potential to be a game-changer in real-time tracking of climate change across the planet.
translated by 谷歌翻译
Recent advances in open-domain question answering (ODQA) have demonstrated impressive accuracy on standard Wikipedia style benchmarks. However, it is less clear how robust these models are and how well they perform when applied to real-world applications in drastically different domains. While there has been some work investigating how well ODQA models perform when tested for out-of-domain (OOD) generalization, these studies have been conducted only under conservative shifts in data distribution and typically focus on a single component (ie. retrieval) rather than an end-to-end system. In response, we propose a more realistic and challenging domain shift evaluation setting and, through extensive experiments, study end-to-end model performance. We find that not only do models fail to generalize, but high retrieval scores often still yield poor answer prediction accuracy. We then categorize different types of shifts and propose techniques that, when presented with a new dataset, predict if intervention methods are likely to be successful. Finally, using insights from this analysis, we propose and evaluate several intervention methods which improve end-to-end answer F1 score by up to 24 points.
translated by 谷歌翻译
Answering complex questions that require making latent decisions is a challenging task, especially when limited supervision is available. Recent works leverage the capabilities of large language models (LMs) to perform complex question answering in a few-shot setting by demonstrating how to output intermediate rationalizations while solving the complex question in a single pass. We introduce ``Successive Prompting'', where we iteratively break down a complex task into a simple task, solve it, and then repeat the process until we get the final solution. Successive prompting decouples the supervision for decomposing complex questions from the supervision for answering simple questions, allowing us to (1) have multiple opportunities to query in-context examples at each reasoning step (2) learn question decomposition separately from question answering, including using synthetic data, and (3) use bespoke (fine-tuned) components for reasoning steps where a large LM does not perform well. The intermediate supervision is typically manually written, which can be expensive to collect. We introduce a way to generate a synthetic dataset which can be used to bootstrap a model's ability to decompose and answer intermediate questions. Our best model (with successive prompting) achieves an improvement of ~5% absolute F1 on a few-shot version of the DROP dataset when compared with a state-of-the-art model with the same supervision.
translated by 谷歌翻译
半监督域适应性(SSDA)中的主要挑战之一是标记源和目标样本数量之间的偏差比,导致该模型偏向源域。 SSDA中的最新作品表明,仅将标记的目标样品与源样本对齐可能导致目标域与源域的不完全域对齐。在我们的方法中,为了使两个域对齐,我们利用对比的损失,使用来自两个域的监督样本学习语义上有意义的域不可知特征空间。为了减轻偏斜标签比率引起的挑战,我们通过将其特征表示形式与来自源和目标域的标记样品的特征表示形式进行比较,为未标记的目标样本进行了伪造。此外,为了增加目标域的支持,在训练过程中,这些潜在的嘈杂的伪标签逐渐被逐渐注入标记的目标数据集中。具体而言,我们使用温度缩放的余弦相似性度量将软伪标签分配给未标记的目标样品。此外,我们计算每个未标记样品的软伪标签的指数移动平均值。这些伪标签逐渐注入或删除)(从)基于置信阈值(以补充源和目标分布的比对)(从)中(从)中。最后,我们在标记和伪标记的数据集上使用有监督的对比损失来对齐源和目标分布。使用我们提出的方法,我们在SSDA基准测试中展示了最先进的性能-Office-Home,Domainnet和Office-31。
translated by 谷歌翻译
语义上有意义的句子嵌入对于自然语言处理中的许多任务都很重要。为了获得此类嵌入,最近的研究探讨了利用验证语言模型(PLM)作为训练语料库的合成生成数据的想法。但是,PLM通常会产生与人类写的句子大不相同的句子。我们假设将所有这些合成示例同样地用于训练深层神经网络可能会对学习语义上有意义的嵌入产生不利影响。为了分析这一点,我们首先训练一个分类器来识别机器编写的句子,并观察到机器编写的句子的语言特征与人写的句子的语言特征大不相同。基于此,我们提出了一种新颖的方法,该方法首先训练分类器来衡量每个句子的重要性。然后,分类器的蒸馏信息用于训练可靠的句子嵌入模型。通过对四个现实世界数据集的广泛评估,我们证明了我们的合成数据训练的模型可以很好地概括并表现优于现有基线。我们的实现可在https://github.com/ddehun/coling2022_reweighting_sts上公开获得。
translated by 谷歌翻译
尽管最近的分布(OOD)检测,异常检测和不确定性估计任务的最新进展,但并不存在任务不合时宜的和事后方法。为了解决此限制,我们设计了一种基于聚类的新型结合方法,称为任务不可知和事后看不见的分布检测(TAPUDD),该方法利用了从对特定任务进行训练的模型中提取的功能。它明确地包括Tap-Mahalanobis,该曲线簇起训练数据集的特征,并确定了所有群集的测试样品的最小Mahalanobis距离。此外,我们提出了一个结合模块,该模块汇总了对不同数量簇的迭代TAP-MAHALANOBIS的计算,以提供可靠,有效的群集计算。通过对合成和现实世界数据集进行的广泛实验,我们观察到我们的方法可以在各种任务中有效地检测出看不见的样本,并与现有基线进行更好的或与现有基线相比。为此,我们消除了确定簇数量的最佳价值的必要性,并证明我们的方法对于大规模分类任务更可行。
translated by 谷歌翻译
联合学习(FL)是一个活跃的研究领域。采用FL的最合适区域之一是医疗领域,必须尊重患者隐私。但是,先前的研究并未完全考虑谁最有可能在医疗领域使用FL。渴望采用FL的不是医院,而是想要开发具有真实患者记录的机器学习模型的服务提供商。此外,服务提供商希望以最低成本的可能性来最大程度地提高模型的性能。在这项工作中,我们提出了FL方法的经验基准,考虑了三个现实世界数据集的性能和货币成本:电子健康记录,皮肤癌图像和心电图数据集。我们还建议使用近端正则化的联合学习,除了局部归一化(FEDPXN),该学习使用FEDPROX和FEDBN的简单组合优于所有其他FL算法,而仅消耗比最高效率的方法稍大一些。
translated by 谷歌翻译
本文的目的是为社区提供创新的新兴技术框架,用于打击流行病情况。本文提出了一种基于人工智能和边缘计算的独特的疫情响应系统框架,为公民中心服务提供帮助跟踪和跟踪公共或工作场所设置中的屏蔽检测和社会疏散度量等安全政策。该框架还提供工业设置的实施指南,以及治理和联系跟踪任务。因此,通过将导致智能城市规划和发展,重点是有助于提高生活质量的公民卫生系统。呈现的概念框架通过通过研究人员的公共网站的次要数据收集来验证,通过研究人员的公共网站,GitHub存储库和着名的期刊以及进一步的基准测试在Microsoft Azure云环境中进行实验结果进行了实验结果。该研究包括用于基准分析的选择性AI模型,并在大规模社会设置中评估了边缘计算环境中的性能和准确性。对象检测任务中的总体yolo模型优于窗口检测任务中的更快,适用于掩模检测和HRNETV2优异性语义分割问题,以解决AI-Edge推理环境设置中的社会疏散任务。本文提出了新的Edge-AI算法,用于建立技术为导向的解决方案,用于检测人类运动和社会距离的面罩。本文丰富了人工智能和边缘计算的技术进步,适用于社会和医疗保健系统的问题。该框架进一步配备了政府机构,系统提供商来设计和构建社区设置的技术导向模型,以利用新兴技术进入智能城市环境的生活质量。
translated by 谷歌翻译